DOMINATION OF AI AND MACHINE LEARNING IN PHARMACEUTICAL BIOTECHNOLOGY AND PHARMACOGENOMICS

Authors

  • Yasmin Ansari Nagpur College of Pharmacy
  • Pallavi Zode Nagpur College of Pharmacy
  • Chaitanya Durge Nagpur College of Pharmacy

DOI:

https://doi.org/10.21276/IERJ255174111277

Keywords:

Artificial Intelligence (AI), Machine Learning (ML), Pharmaceutical Biotechnology, Pharmacogenomics, Algorithms, Genomic Data

Abstract

The rapid advancement of Artificial Intelligence (AI) and Machine Learning (ML) is significantly transforming the landscape of pharmaceutical biotechnology and pharmacogenomics. These technologies are redefining how drugs are discovered, tested, and personalized for individual patients based on their genetic profiles. AI algorithms are now being used to identify potential drug candidates, predict molecular interactions, optimize clinical trials, and tailor therapies to enhance patient outcomes. In the realm of pharmacogenomics, ML models facilitate the interpretation of complex genomic data, enabling clinicians to anticipate drug responses and minimize adverse effects. While the benefits are substantial—ranging from faster innovation cycles to more precise medical interventions—the integration of AI also presents several challenges, including data quality issues, interpretability: of models, regulatory ambiguity, and ethical concerns around privacy and bias. This paper explores the current applications, tools, benefits, limitations, and future directions of AI and ML in pharmaceutical biotechnology and genomic medicine, emphasizing the potential of these technologies to drive a new era of personalized and predictive healthcare.

References

I. Topol, E. J. (2019). Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again. Basic Books.

II. Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., & Blaschke, T. (2018). The rise of deep learning in drug discovery. Drug Discovery Today, 23(6), 1241–1250. https://doi.org/10.1016/j.drudis.2018.01.039

III. Zhang, L., Tan, J., Han, D., & Zhu, H. (2017). From machine learning to deep learning: Progress in machine intelligence for rational drug discovery. Drug Discovery Today, 22(11), 1680–1685. https://doi.org/10.1016/j.drudis.2017.08.010

IV. FDA. (2021). Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan. https://www.fda.gov/media/145022/download

V. Beam, A. L., & Kohane, I. S. (2018). Big data and machine learning in health care. JAMA, 319(13), 1317–1318. https://doi.org/10.1001/jama.2017.18391

VI. Dey, D., Slomka, P. J., Leeson, P., Comaniciu, D., & Shrestha, S. (2019). Artificial Intelligence in Cardiovascular Imaging: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 73(11), 1317–1335. https://doi.org/10.1016/j.jacc.2018.12.054

VII. • Vamathevan, J., Clark, D., Czodrowski, P., et al. (2019). Applications of machine learning in drug discovery and development. Nature Reviews Drug Discovery, 18(6), 463–477. https://doi.org/10.1038/s41573-019-0024-5

VIII. • Chen, H., Engkvist, O., Wang, Y., et al. (2018). The rise of deep learning in drug discovery. Drug Discovery Today, 23(6), 1241–1250. https://doi.org/10.1016/j.drudis.2018.01.039

IX. • Mak, K. K., & Pichika, M. R. (2019). Artificial intelligence in drug development: present status and future prospects. Drug Discovery Today, 24(3), 773–780. https://doi.org/10.1016/j.drudis.2018.11.014

X. • Schwab, M., et al. (2020). Predictive analytics and AI in manufacturing of biologics. Biotechnology Advances, 44, 107620. https://doi.org/10.1016/j.biotechadv.2020.107620

XI. • Ho, D., et al. (2020). Artificial intelligence in healthcare and biopharmaceuticals. Nature Biomedical Engineering, 4(10), 865–866. https://doi.org/10.1038/s41551-020-00660-0

XII. • Vamathevan, J., Clark, D., Czodrowski, P., et al. (2019). Applications of machine learning in drug discovery and development. Nature Reviews Drug Discovery, 18(6), 463–477. https://doi.org/10.1038/s41573-019-0024-5

XIII. • Chen, H., Engkvist, O., Wang, Y., et al. (2018). The rise of deep learning in drug discovery. Drug Discovery Today, 23(6), 1241–1250. https://doi.org/10.1016/j.drudis.2018.01.039

XIV. • Mak, K. K., & Pichika, M. R. (2019). Artificial intelligence in drug development: present status and future prospects. Drug Discovery Today, 24(3), 773–780. https://doi.org/10.1016/j.drudis.2018.11.014

XV. • Schwab, M., et al. (2020). Predictive analytics and AI in manufacturing of biologics. Biotechnology Advances, 44, 107620. https://doi.org/10.1016/j.biotechadv.2020.107620

XVI. • Ho, D., et al. (2020). Artificial intelligence in healthcare and biopharmaceuticals. Nature Biomedical Engineering, 4(10), 865–866. https://doi.org/10.1038/s41551-020-00660-0

XVII. • Paul, D., Sanap, G., Shenoy, S., et al. (2021). Artificial intelligence in drug discovery and development. Drug Discovery Today, 26(1), 80–93. https://doi.org/10.1016/j.drudis.2020.10.010

XVIII. • Ramesh, A., & Yu, M. K. (2022). Machine learning for personalized medicine. Nature Medicine, 28, 649–660. https://doi.org/10.1038/s41591-022-01718-y

XIX. • Ekins, S., Puhl, A. C., Zorn, K. M., et al. (2019). Exploiting machine learning for end-to-end drug discovery and development. Nature Materials, 18(5), 435–441. https://doi.org/10.1038/s41563-019-0338-z

XX. • Topol, E. (2019). Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again. Basic Books.

XXI. • Hinton, G. E., et al. (2015). Deep learning in healthcare: Opportunities and challenges. Nature, 526(7573), 436–444. https://doi.org/10.1038/nature14539

XXII. Jumper, J., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2

XXIII. Wu, Z., Ramsundar, B., et al. (2018). MoleculeNet: A benchmark for molecular machine learning. Chemical Science, 9(2), 513–530. https://doi.org/10.1039/C7SC02664A

XXIV. Devlin, J., Chang, M. W., et al. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. Proceedings of NAACL-HLT, 4171–4186. https://doi.org/10.18653/v1/N19-1423

XXV. Broad Institute. (2020). GATK Best Practices. https://gatk.broadinstitute.org

XXVI. H2O.ai Documentation. (2022). Machine Learning for Healthcare and Life Sciences. https://docs.h2o.ai/

XXVII. Topol, E. (2019). Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again. Basic Books.

XXVIII. Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future — Big data, machine learning, and clinical medicine. New England Journal of Medicine, 375(13), 1216–1219. https://doi.org/10.1056/NEJMp1606181

XXIX. Goodman, B., & Flaxman, S. (2017). European Union regulations on algorithmic decision-making and a “right to explanation”. AI Magazine, 38(3), 50–57. https://doi.org/10.1609/aimag.v38i3.2741

XXX. Wiens, J., Saria, S., et al. (2019). Do no harm: A roadmap for responsible machine learning in health care. Nature Medicine, 25(9), 1337–1340. https://doi.org/10.1038/s41591-019-0548-6

XXXI. Panch, T., Mattie, H., & Celi, L. A. (2019). The “inconvenient truth” about AI in healthcare. npj Digital Medicine, 2, 77. https://doi.org/10.1038/s41746-019-0155-4

XXXII. • Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., & Blaschke, T. (2018). The rise of deep learning in drug discovery. Drug Discovery Today, 23(6), 1241–1250. https://doi.org/10.1016/j.drudis.2018.01.039

XXXIII. • Jumper, J., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2

XXXIV. • Rajpurkar, P., et al. (2022). AI in health and medicine. Nature Biomedical Engineering, 6, 1–17. https://doi.org/10.1038/s41551-021-00806-2

XXXV. • Beam, A. L., & Kohane, I. S. (2018). Big data and machine learning in health care. JAMA, 319(13), 1317–1318. https://doi.org/10.1001/jama.2017.18391

XXXVI. • Zhou, L., Pan, S. J., & Wang, F. (2021). Explainable artificial intelligence for healthcare: A survey. Nature Machine Intelligence, 3, 997–1006. https://doi.org/10.1038/s42256-021-00432-0

XXXVII. • Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., & Blaschke, T. (2018). The rise of deep learning in drug discovery. Drug Discovery Today, 23(6), 1241–1250. https://doi.org/10.1016/j.drudis.2018.01.039

XXXVIII. • Jumper, J., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2

XXXIX. • Rajpurkar, P., et al. (2022). AI in health and medicine. Nature Biomedical Engineering, 6, 1–17. https://doi.org/10.1038/s41551-021-00806-2

XL. • Beam, A. L., & Kohane, I. S. (2018). Big data and machine learning in health care. JAMA, 319(13), 1317–1318. https://doi.org/10.1001/jama.2017.18391

Additional Files

Published

15-04-2025

How to Cite

Yasmin Ansari, Pallavi Zode, & Chaitanya Durge. (2025). DOMINATION OF AI AND MACHINE LEARNING IN PHARMACEUTICAL BIOTECHNOLOGY AND PHARMACOGENOMICS. International Education and Research Journal (IERJ), 11(04). https://doi.org/10.21276/IERJ255174111277