PYROELECTRIC RESPONSE OF FERROELECTRIC PVDF AND THEIR COPOLYMER: A REVIEW
Keywords:
Ferroelectric, Pyroelectric, Piezoelectric, PVDF, Copolymer, TerpolymerAbstract
The world's conventional energy sources are fast depleting due to population growth and civilization expansion. Subclasses of piezoelectric materials include ferroelectric and pyroelectric materials. Materials with permanent polarization as a result of their chemical composition are called ferroelectric materials. However, the spontaneous polarization that happens in pyroelectric materials when they are exposed to temperature changes. With the use of ferroelectric, pyroelectric, and piezoelectric materials, waste environmental energy is mainly transformed into electrical energy. Modern electronics are designed with reduced power consumption in consideration. Materials based on polymers are thought to be viable options for these devices. Because of its low thermal conductivity and permittivity, flexibility, processability, greater output performances, and affordability, PVDF and its family of polymers(copolymer & terpolymer )are widely employed in device applications.
References
I. J. Valasek, Phys. Rev. 1921, 17, 475.
II. Y. Xu, in Ferroelectric Materials and Their Applications, Elsevier, Amsterdam 1991, pp. 1–36.
III. M. S. Vijaya, in Piezoelectric Materials and Devices: Applications in Engineering and Medical Sciences, CRC Press—Taylor & Francis Group, Boca Raton, USA 2013, pp. 1–12.
IV. W. Wersing, W. Heywang, H. Beige, H. Thomann, in Piezoelectricity: Evolution and Future of a Technology (Eds: W. Heywang, K. Lubitz, W. Wersing), Springer, Berlin, Heidelberg 2008, pp. 37–87.
V. E. Defaÿ, in Integration of Ferroelectric and Piezoelectric Thin Films (Ed: E. Defaÿ), ISTE Ltd; John Wiley & Sons, Inc., London (UK); Hoboken (USA) 2011, pp. 1–24.
VI. J. A. Gonzalo, B. Jiménez, in Ferroelectricity: The Fundamentals Collection (Eds: J. A. Gonzalo, B. Jiménez), Wiley-VCH, Weinheim 2008, pp. 1–4.
VII. H. Kawai, Jpn. J. Appl. Phys. 1969, 8, 975.
VIII. J. G. Bergman Jr, J. H. McFee, G. R. Crane, Appl. Phys. Lett. 1971, 18, 203.
IX. S. Bauer, F. Bauer, in Piezoelectricity: Evolution and Future of a Technology, Springer Berlin Heidelberg, Berlin, Heidelberg 2008, pp. 157–177.
X. P. Martins, A. C. Lopes, S. Lanceros-Mendez, Prog. Polym. Sci. 2014, 39, 683.
XI. C. Ribeiro, V. Sencadas, D. M. Correia, S. Lanceros-Mendez, Colloids Surf., B 2015, 136, 46.
XII. L. Ruan, X. Yao, Y. Chang, L. Zhou, G. Qin, X. Zhang, Polymers 2018, 10, 228.
XIII. J. Nunes-Pereira, P. Costa, S. Lanceros-Mendez, in Comprehensive Energy Systems (Ed: I. Dincer), Elsevier, Oxford 2018, pp. 380–415.
XIV. D. Miranda, C. M. Costa, S. Lanceros-Mendez, J. Electroanal. Chem. 2015, 739, 97.
XV. S. B. Lang, S. Muensit, Appl. Phys. A 2006, 85, 125.
XVI. M. Marutake, Ferroelectrics 1995, 171, 5.
XVII. S. B. Lang, Pyroelectricity: From ancient curiosity to modern imaging tool, Phys. Today, 2005, 58, 31–36.
XVIII. D. Lingam, A. R. Parikh, J. Huang, A. Jain and M. MinaryJolandan, Nano/microscale pyroelectric energy harvesting: challenges and opportunities, Int. J. Smart Nano Mater., 2013, 4, 229–245.
XIX. P. Mane, J. Xie, K. K. Leang and K. Mossi, Cyclic energy harvesting from pyroelectric materials, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2011, 58(1), 10–17.
XX. A. Cuadras, M. Gasulla and V. Ferrari, Thermal energy harvesting through pyroelectricity, Sens. Actuators, A, 2010, 158, 132–139.
XXI. S. B. Lang and D. K. Das-Gupta, Pyroelectricity: Fundamentals and Applications, in Handbook of Advanced Electronic and Photonic Materials and Devices, ed. H. S. Nalwa, Academic Press, 2001, vol. 4, pp. 1–54.
XXII. I. Lubomirsky and O. Stafsudd, Practical guide for pyroelectric measurements, Rev. Sci. Instrum., 2012, 83, 051101.
XXIII. R. W. Whatmore, Pyroelectric devices and materials, Rep. Prog. Phys., 1986, 49, 1335–1386.
XXIV. X. Li, et al., Pyroelectric and electrocaloric materials, J. Mater. Chem., 2013, 1, 23–37.
XXV. J. D. Zook and S. T. Liu, Pyroelectric effects in thin film, J. Appl. Phys., 1978, 49, 4604–4606.
XXVI. Q. Li, Q. Wang, Macromol. Chem. Phys. 2016, 217, 1228.
XXVII. M. Mai, S. Ke, P. Lin, X. Zeng, J. Nanomater. 2015, 2015, 1.
XXVIII. R. G. Kepler, R. A. Anderson, J. Appl. Phys. 1978, 49, 1232.
XXIX. C. Ribeiro, C. M. Costa, D. M. Correia, J. Nunes-Pereira, J. Oliveira, P. Martins, R. Goncalves, V. F. Cardoso, S. Lanceros-Mendez, Nat. Protoc. 2018, 13, 681.
XXX. M. Mai, S. Ke, P. Lin, X. Zeng, J. Nanomater. 2015, 2015, 1.
XXXI. H. S. Nalwa, Ferroelectric Polymers: Chemistry: Physics, and Applications, Taylor & Francis, London 1995.
XXXII. A. Maceiras, J. L. Vilas, L. M. León, in Magnetoelectric Polymer-Based Composites: Fundamentals and Applications (Eds: S. Lanceros-Méndez, P. Martins), Wiley-VHC, Weinheim, Germany 2017, pp. 225–254.
XXXIII. S. R. Khaled, D. Sameoto, S. Evoy, Smart Mater. Struct. 2014, 23, 33001.
XXXIV. S. Firmino Mendes, C. M. Costa, V. Sencadas, J. Serrado Nunes, P. Costa, R. Gregorio, S. Lanceros-Méndez, Appl. Phys. A 2009, 96, 899.
XXXV. P. Costa, J. Silva, V. Sencadas, C. M. Costa, F. W. J. van Hattum, J. G. Rocha, S. Lanceros-Mendez, Carbon 2009, 47, 2590.
XXXVI. F. R. Fan, W. Tang, Z. L. Wang, Adv. Mater. 2016, 28, 4283.
XXXVII. F. Hu, Q. Cai, F. Liao, M. Shao, S. T. Lee, Small (Weinheim an der Bergstrasse, Germany) 2015, 11, 5611.
XXXVIII. F. Oliveira, Y. Leterrier, J.-A. Månson, O. Sereda, A. Neels, A. Dommann, D. Damjanovic, J. Polym. Sci., Part B 2014, 52, 496.
XXXIX. B. Ameduri, Chem. Rev. 2009, 109, 6632.
XL. Z. Li, Y. Wang, Z. Y. Cheng, Appl. Phys. Lett. 2006, 88, 062904.
XLI. M. Kamberi, D. Pinson, S. Pacetti, L. E. L. Perkins, S. Hossainy, H. Mori, R. J. Rapoza, F. Kolodgie, R. Virmani, J. Biomed. Mater. Res., Part B 2018, 106, 1721.
XLII. Y. Cho, D. Ahn, J. B. Park, S. Pak, S. Lee, B. O. Jun, J. Hong, S. Y. Lee, J. E. Jang, J. Hong, S. M. Morris, J. I. Sohn, S. N. Cha, J. M. Kim, Adv. Electron. Mater. 2016, 2, 1600225.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Education and Research Journal (IERJ)
This work is licensed under a Creative Commons Attribution 4.0 International License.