REVIEW ON VARIOUS APPLICATIONS OF FRACTIONAL CALCULUS IN SCIENCE

Authors

  • Farukh Ahmed Mulani Assistant Professor and Head of the Department, Department of Mathematics, GES Arts Commerce and Science College Jawhar.

Keywords:

Fractional Calculus, Sink-Fractional Derivative, Electrical spectroscopy impedance, Newtonian Mechanics, Hexapod Robot, Definition taken from the Books

Abstract

Mainly due to its powerful applications in diverse and large fields of engineering and science, fractional calculus became important mathematical system during the past six decades, in several research papers and review articles has been published on many tremendous results. Many results and concepts are to be discovered. In this perspective, this review paper shows the use and demonstration of Fractional Calculus in the area of Signal Processing, Engineering, Electronic circuit analysis, Physics, Mechanics, Biology. I hope this significant information will guide researchers and young generation to see some of the applications. This collection of reviews will provide useful information to our community.

References

I. Anvari, B., Milner, T. E., Tanenbaum, B. S., Kimel, S., Svaasand, L. O., & Nelson, J., S., Selective cooling of biological tissues: applications for thermally mediated therapeutic procedures. Physics in Medicine and Biology, 40, pp. 241-252, 1995.

II. AtanackovićT M, KonjikS, PilipovićS and ZoricaD, „Complex order fractional derivatives in viscoelasticity‟, arXiv.org - e-print, July 2014, URL https://arxiv.org/abs/1407.8294.

III. BabenkoYI, Power relation sin a circumference and a sphere.NorellPressInc;1997 BarsoukovE,MacdonaldJR.Impedancespectroscopy:Theory,experiment,andapplicatio ns.Wiley;1987.

IV. Bartumeus F, Catalan J, Fulco U, Lyra M, Viswanathan G. Optimizing the encounter rate in biological interactions: Lévy versus Brownian strategies. Phys Rev Lett. (2002) 88:097901. doi: 10.1103/PhysRevLett.88.097901

V. Bartumeus F, Da Luz ME, Viswanathan G, Catalan J. Animal search strategies: a quantitative randomwalk analysis. Ecology (2005) 86:3078–87. doi: 10.1890/04-1806

VI. Bejan, A., Heat Transfer, John Wiley and Sons: New York, 1993.

VII. Boyer D, Miramontes O, Ramos-Fernandez G, Mateos J, Cocho G. Modeling the searching behavior of social monkeys. Phys A Stat Mech Appl. (2004) 342:329–35.

VIII. Ciuchi F, Mazzulla A, Scaramuzza N, Lenzi EK, Evangelista LR. Fractional diffusion equation and theelectricalimpedance:Experimental evidence in liquidcrystallinecells.JPhysChemC2012;116:87737.

IX. Ellis GFR, Murugan J, Weltman A (eds.). Foundations of Space and Time. Cambridge: Cambridge University Press (2012).

X. Goldberg D.E,Genetic Algorithms in Search Optimization and Machine Learning, AddisonWesley, New York, NY, USA,1989.

XI. HerrmannR.Fractionalcalculus: an introductionforphysicist.NewJersey:World Scientific;2011.

XII. Krijnen ME, van Ostayen R, HosseinNia SH. The application of fractional order control for an air-based contactless actuation system. ISA Trans 2017. https://doi.org/10.1016/j.isatra.2017.04.014.

XIII. Lenzi EK, PRG F, Petrucci T, Mukai H, Ribeiro HV. Anomalous-diffusion approach applied to the electrical response of water. PhysRev E011;84(041128).

XIV. Lenzi EK, Zola RS, Rossato R, Ribeiro HV, Vieira DS, Evangelista LR. Asymptotic behaviors of the Poisson–Nernst–Planck model, generalizations and best adjust of experimental data. Electrochim Acta 2017; 226:40–5.

XV. Li CP, Mainardi F. 2011 Editorial. Eur. Phys. J. Special Top. 193, 1–4.

XVI. LiY,YuSL.Fractional order difference filter sandedge detection.OptoElectronEng2006;33(19 ):71

XVII. Machado J.A.T, Jesus I.S, Cunha J.B, and Tar J.K ,“Fractional dynamics and control of distributed parameter systems,” Intelligent Systems at the Service of Mankind,vol.2,pp.295–305,2006.

XVIII. Machado JT, Kiryakova V, Mainardi F. 2011 Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16, 1140–1153.

XIX. Magin, R. L., Fractional Calculus in Bioengineering, Critical Reviews in Bioengineering in Press, Department of Bioengineering, University of Illinois, Chicago, IL, 2003.

XX. Makris N and Constantinou M C, „Models of Viscoelasticity with Complex Order Derivatives‟, Journal of Engineering Mechanics, Vol 119, No 7, pp 1453– 1464, July 1993.

XXI. Mandic´ PD, Lazarevic´ MP, Šcekara TB. D-Decomposition technique for stabilization of furuta pendulum: Fractional approach. Bull Pol AcadSciTech Sci2016;64(1):189–96.

XXII. Mielczarek J, Trzeniewski T. Towards the map of quantum gravity. arXiv:1708.07445

XXIII. NetoJP. Valério D. Vinga S. Variable order fractional derivatives and bone remodeling in the presence of metastases. In: Azar A.T., Radwan A.G., Vaidyanathan S.-d., editors. Linear and nonlinear fractional order systems:Analysis and applications.Elsevier,inpress,chapter42.

XXIV. Nigmatullin RR, Maione G, Lino P, Saponaro F, Zhang W. The general theory of the quasi-reproducible experiments: how to describe the measured data of complex systems? Commun Nonlinear SciNumerSimul2017;42:324–41.

XXV. Nigmatullin RR, Osokin SI, Toboev VA. NAFASS: Discrete spectroscopyof random signals. ChaosSolitonsFract2011;44:226–40.

XXVI. Oriti D. Approaches to Quantum Gravity. Cambridge: Cambridge University Press (2009).

XXVII. Pennes, H. H., Analysis of tissue and arterial blood temperatures in the resting human forearm. Journal of Applied Physiology, 1(2), pp. 93-122, 1948

XXVIII. Poulikakos, D., Conduction Heat Transfer, Prentice-Hall: Englewood Cliffs, NJ, 1994.

XXIX. PuYF. Fractional differential analysis for texture of digital image. JAlg Comput Technol2007

XXX. Pu YF, Zhou JL, Yuan X. Fractional differential mask: a fractional differential-based approach for multiscale texture enhancement. IEEE Trans Image Process2010;19(2):491–511.

XXXI. Reis C, MachadoJ. A. T, and Cunha J. B, “An evolutionary hybrid approach in the design of combinationaldigitalcircuits,” WSEAS Transaction son Systems,vol.4,no.12,pp.2338–2345,2005.

XXXII. Reynolds A. Optimal random Lévy-loop searching: new insights into the searching behaviours of central-place foragers. EPL (2008) 82:20001.

XXXIII. Sabatier J, Agrawal OP. Tenreiromachado JA. advances in fractional calculus. Theoretical developments and applications in physics and engineering. Springer;2007.

XXXIV. Samko SG, Kilbas AA, Marichev OI. 1993 Fractional integrals and derivatives: theory and applications. Amsterdam, The Netherlands: Gordon and Breach.

XXXV. SilvaM.F,MachadoJ.A.T,andLopesA.M,“Position/forcecontrolofawalkingrobot,”Machine Intelligence and Robot Control, vol. 5, pp. 33–44,2003.

XXXVI. Viswanathan GM, Buldyrev SV, Havlin S, Da Luz M, Raposo E, Stanley HE. Optimizing the success of random searches. Nature (1999) 401:911–4.

XXXVII. Viswanathan G, Afanasyev V, Buldyrev SV, Havlin S, Da Luz M, Raposo E, et al. Lévy,flights in random searches. Phys A Stat Mech Appl. (2000) 282:1–12.

XXXVIII. Viswanathan GM, Afanasyev V, Buldyrev S, Murphy E, Prince P, Stanley HE. Lévy flight search patterns of wandering albatrosses. Nature (1996) 381:413–5.

XXXIX. Yang X-J, Gao F, Terneiro Machado JA, Baleanu D. A new fractional derivative involving the normalized sinc function without singular kernel. arXiv:1701.05590 (2017)p. 1–11.

XL. ZhangJ,WeiZ,XiaoL.Adaptive fractional multi scale method for image

Additional Files

Published

01-05-2023

How to Cite

Farukh Ahmed Mulani. (2023). REVIEW ON VARIOUS APPLICATIONS OF FRACTIONAL CALCULUS IN SCIENCE. International Education and Research Journal (IERJ), 9(5). Retrieved from https://ierj.in/journal/index.php/ierj/article/view/2703