A SURVEY OF SOME APPROXIMATION RESULTS FOR PSEUDOCONTRACTIVE MAPPINGS

Authors

  • Sagar Godse MIT School of Computing, MIT ADT University, Pune-412201
  • Dr. Krishna Kumar MIT School of Computing, MIT ADT University, Pune-412201

Keywords:

Operators, Pseudocontractive Mapping, Fixed Point, Iteration Methods, Hilbert and Banach Spaces

Abstract

The Existence and approximation results for various pseudo-contractive mappings using iterative methods such as Picard iteration, Mann iteration, and Ishikawa iteration on different spaces such as normed linear spaces, Banach spaces, uniformly convex Banach spaces, reflexive spaces, Hilbert spaces, etc., are the main object of study in this survey article. We also discuss applications of pseudo-contractive mappings in other branches of pure and applied mathematics. We mention several known results and state some suggestions for improvement of methods.

References

I. Chaobo Li, Yunan Cui and Lili Chen; Fixed Point Results on Closed Ball in Convex Rectangular b −Metric Spaces and Applications.

II. F. E. Browder: Fixed points theorems for noncompact mappings in Hilbert space, Proc. Nat. Acad. Sci. U.S.A. 53(1965), 1272-1276.

III. D. Gohde: Zum Prinzip der Kontraktiven Abbildung, Math. Nachr. 30(1965),251-258.

IV. W. A. Kirk: A fixed point theorem for mappings which do not increase distance,Amer. Math. Monthly 72(1965), 1004-1006, MR-32 # 6436.

V. F. E. Browder: Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Sympus. Pure Math. 18, No.2 (1976), Amer. Math. Soc.Providence RI, Part-2, 1976.

VI. F. E. Browder; W. V. Petryshyn: Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20(1967), 197-228; MR 36#747.

VII. M. A. Krasnoselskij: Two remarks on the method of successive approximations, USPCHI Mat. Nauk. 10(1955), 123-127; MR 16 # 8339.

VIII. W. A. Kirk; R. Schoneberg: Some results on Pseudocontractive mappings, Pacific J. Math. 71(1977), 89-100.

IX. F. E. Browder: Nonlinear mappings of nonexpansive and accretive in Banach spaces, Bull. Amer. Math. Soc. 73(1967), 875-882; MR 38:581.

X. T. Kato: Accretive operators and nonlinear evolution equations in Banach spaces, Nonlinear Functional Analysis, Proc. Symp. Pure Math. Vol. 18 Part I, ed. Browder, F. E. Amer. Math. Soc. (1970), 138-161.

XI. E. Picard: Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives, J. Math. Pures et Appl. 6(1890), 145-210.

XII. S. Banach: Sur les opérations dans les ensembles absembles abstraits et leur applications aux equations integrales, Fund. Math. 3(1922), 133-181.

XIII. F. S. De Blasi; J. Myjak: Sur la convergence des approximations successives pour les contractions non lineaires dans un espace de Banach, C. R. Academic Sci.Paris Ser. A-B, 283 (1976), A185-A187.

XIV. W. R. Mann: Mean value methods in iteration, Proc. Amer. Math. Soc.4(1953) 506-510; MR-14#998f.

XV. Shario Ishikawa: Fixed points by new iteration method, Proc. Amer. Math. Soc.149(1974), 147-150; MR 49#1243.

XVI. C. E. Chidume; S. A. Mutangadura: An example on the Mann iteration method for Lipschitz pseudocontractions, Proc. Amer. Math. Soc. 129(2001), 2359-2363; MR 2002f:47104.

XVII. Ulrich Kohlenbach, Thomas Powell: Rates of convergence for iterative solutions of equations involving set-valued accretive operators, Computers & Mathematics with Applications, 18 (2020), No 03, 490-503.

XVIII. M. A. Krasnoselskij: Two remarks on the method of successive approximations, USPCHI Mat. Nauk. 10(1955), 123-127; MR 16 # 8339.

XIX. Rainer Picard, Sascha Trostorff: Dynamic first order wave systems with drift term on Riemannian manifolds; Journal of Mathematical Analysis and Applications, 505 (2022), No. 01, 1-30.

XX. M. M. Vainberg: On the convergence of the method of steepest descent for nonlinear equations, Sibir Mat. J. 2(1961), 201-220.

XXI. Heng-youLan : Approximation-solvability of population biology systems based on -Laplacian elliptic inequalities with demicontinuous strongly pseudo-contractive operators, Chaos, Solitons & Fractals, 150 (2021), (https://doi.org/10.1016/j.chaos.2021.111155).

XXII. Naeem Saleem, Imo Kalu Agwu, Umar Ishtiaq and Stojan Radenovi´c -Strong Convergence Theorems for a Finite Family of Enriched Strictly Pseudocontractive Mappings and FT-Enriched Lipschitzian Mappings Using a New Modified Mixed-Type Ishikawa Iteration Scheme with Error. Symmetry 2022,14, 1032.

XXIII. Kazeem Olalekan Aremu, Chinedu Izuchukwu: MULTI-STEP ITERATIVE ALGORITHM FOR MINIMIZATION AND FIXED-POINT PROBLEMS IN P-UNIFORMLY CONVEXMETRIC SPACES, JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION Volume 17, Number 4, July 2021.

XXIV. Bing Tan, Zheng Zhou and Songxiao Li: strong convergence of modified inertial Mann algorithms for nonexpansive mappings

XXV. Nuttawut Bunlue, Suthep Suantai: Hybrid algorithm for common best proximity points of some generalized nonexpansive mappings; Math Meth Appl Sci. 2018;1-12.

XXVI. Yongfu Su, Dongxing Wang, and Maijuan Shang: Strong Convergence of Monotone Hybrid Algorithm for Hemi- Relatively Nonexpansive Mapping

XXVII. P. N. Anh, L. D. Muu: A hybrid subgradient algorithm for nonexpansive mappings and equilibrium problems

XXVIII. Qiao-Li Dong, Songnian He and Yeol Je Cho: a new hybrid algorithm and its numerical realization for two nonexpansive mappings

XXIX. Hemant Kumar Pathak (2018): An Introduction to Nonlinear Analysis and Fixed Point Theory. Springer. https://doi.org/10.1007/978-981-10-8866-7.

XXX. Ravi P. Agarwal, Donal O’Regan, D. R. Sahu: Fixed Point Theory for Lipschitzian-type Mapping with Applications. Springer. https://doi.org/10.1007/978-0-387-75818-3.

Additional Files

Published

01-05-2023

How to Cite

Sagar Godse, & Dr. Krishna Kumar. (2023). A SURVEY OF SOME APPROXIMATION RESULTS FOR PSEUDOCONTRACTIVE MAPPINGS. International Education and Research Journal (IERJ), 9(5). Retrieved from https://ierj.in/journal/index.php/ierj/article/view/2697