CALCIUM CALMODULIN-DEPENDENT PROTEIN KINASE II (CAMKII) VERSATILE PLAYER FOR SYNAPTIC PLASTICITY

Authors

  • Atiq Hassan Department of Neuroscience, Avalon University School of Medicine, 122-124 Sta. Rosaweg Curacao, Netherland Antilles.
  • M. V. Raghavendra Rao Department of Neuroscience, Avalon University School of Medicine, 122-124 Sta. Rosaweg Curacao, Netherland Antilles.
  • Yogesh Acharya Department of Neuroscience, Avalon University School of Medicine, 122-124 Sta. Rosaweg Curacao, Netherland Antilles.
  • Sateesh Arja Department of Neuroscience, Avalon University School of Medicine, 122-124 Sta. Rosaweg Curacao, Netherland Antilles.
  • Reshma Fateh Department of Neuroscience, Avalon University School of Medicine, 122-124 Sta. Rosaweg Curacao, Netherland Antilles.

Keywords:

Calcium/calmodulin-dependent protein kinase II, long-term Potentiation, long-term Depression, short-term potentiation, synaptic plasticity

Abstract

Calcium ions (Ca2+) play significant role in signal transduction pathways. Ca2+ signaling is mediated through several Ca2+-binding proteins, including calmodulin (CaM). CaM is a regulatory protein that modulate the activity of several signaling molecules those are crucial for synaptic plasticity including Ca2+/calmodulin-dependent protein kinase or (CaM kinase II). CaMKII is a multifunctional signaling protein that comprises 1%–2% of the protein in brain. Due to its extraordinary abundance within neuronal cells, CaMKII has been believed to act as both a structural protein as well as an enzyme during synaptic plasticity. CaMKII is a key synaptic signaling protein, and involved in numerous forms of synaptic plasticity such as LTP. CaMKII has been one of the most extensively studied signaling protein that play a pivotal role in various forms of synaptic plasticity and memory in hippocampal and other neurons.  The studies have shown CaMKII is involved in numerous forms of synaptic plasticity including long-term potentiation (LTP), long-term depression (LTD) and short-term potentiation (STP). These all form of plasticity forms the basis for learning,  memory and cognition.

References

I. 1. Andrasfalvy, B. K., and Magee, J. C., 2004. Changes in AMPA receptor currents following LTP induction on rat CA1 pyramidal neurones. J Physiol 559, 543-554.

II. 2. Benke, T. A., Luthi, A., Isaac, J. T., and Collingridge, G. L., 1998. Modulation of AMPA receptor unitary conductance by synaptic activity. Nature 393, 793-797.

III. 3. Bliss, T. V., and Collingridge, G. L., 1993. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31-39.

IV. 4. Braun, A. P., and Schulman, H., 1995. The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Annu Rev Physiol 57, 417-445.

V. 5. Burgin, K. E., Waxham, M. N., Rickling, S., Westgate, S. A., Mobley, W. C., and Kelly, P. T., 1990. In situ hybridization histochemistry of Ca2+/calmodulin-dependent protein kinase in developing rat brain. J Neurosci 10, 1788-1798.

VI. 6. Burkert, P., and Duch, C., 2006. Developmental changes of CaMKII localization, activity and function during postembryonic CNS remodelling in Manduca sexta. Eur J Neurosci 23, 335-349.

VII. 7. Castellani, G. C., Quinlan, E. M., Bersani, F., Cooper, L. N., and Shouval, H. Z., 2005. A model of bidirectional synaptic plasticity: from signaling network to channel conductance. Learn Mem 12, 423-432.

VIII. 8. Chapman, P. F., Frenguelli, B. G., Smith, A., Chen, C. M., and Silva, A. J., 1995. The alpha-Ca2+/calmodulin kinase II: a bidirectional modulator of presynaptic plasticity. Neuron 14, 591-597.

IX. 9. Cruzalegui, F. H., and Means, A. R., 1993. Biochemical characterization of the multifunctional Ca2+/calmodulin-dependent protein kinase type IV expressed in insect cells. J Biol Chem 268, 26171-26178.

X. 10. Dingledine, R., Borges, K., Bowie, D., and Traynelis, S. F., 1999. The glutamate receptor ion channels. Pharmacol Rev 51, 7-61.

XI. 11. Fernandez-Chacon, R., Shin, O. H., Konigstorfer, A., Matos, M. F., Meyer, A. C., Garcia, J., Gerber, S. H., Rizo, J., Sudhof, T. C., and Rosenmund, C., 2002. Structure/function analysis of Ca2+ binding to the C2A domain of synaptotagmin 1. J Neurosci 22, 8438-8446.

XII. 12. Fink, C. C., and Meyer, T., 2002. Molecular mechanisms of CaMKII activation in neuronal plasticity. Curr Opin Neurobiol 12, 293-299.

XIII. 13. Fujishiro Donai, H., 2006. [Study on the regulation of synaptic function by Ca2+/calmodulin-dependent protein kinase II]. Yakugaku Zasshi 126, 337-342.

XIV. 14. Gan, J., Qi, C., and Liu, Z., 2015. Roles of Ca(2+)/calmodulin-dependent protein kinase II in subcellular expression of striatal N-methyl-D-aspartate receptors in l-3, 4-dihydroxyphenylalanine-induced dyskinetic rats. Drug Des Devel Ther 9, 2119-2128.

XV. 15. Gao, C., Sun, X., and Wolf, M. E., 2006. Activation of D1 dopamine receptors increases surface expression of AMPA receptors and facilitates their synaptic incorporation in cultured hippocampal neurons. J Neurochem 98, 1664-1677.

XVI. 16. Goldberg, J., Nairn, A. C., and Kuriyan, J., 1996. Structural basis for the autoinhibition of calcium/calmodulin-dependent protein kinase I. Cell 84, 875-887.

XVII. 17. Goodell, D. J., Benke, T. A., and Bayer, K. U., 2016. Developmental restoration of LTP deficits in heterozygous CaMKIIalpha KO mice. J Neurophysiol 116, 2140-2151.

XVIII. 18. Greengard, P., 1991. Neuronal phosphoproteins: mediators of signal transduction. Molecular Neurobiol 1, 81-119.

XIX. 19. Greengard, P., Valtorta, F., Czernik, A. J., and Benfenati, F., 1993. Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259, 780-785.

XX. 20. Hansel, C., de Jeu, M., Belmeguenai, A., Houtman, S. H., Buitendijk, G. H., Andreev, D., De Zeeuw, C. I., and Elgersma, Y., 2006. alphaCaMKII Is essential for cerebellar LTD and motor learning. Neuron 51, 835-843.

XXI. 21. Hayashi, N., Izumi, Y., Titani, K., and Matsushima, N., 2000. The binding of myristoylated N-terminal nonapeptide from neuro-specific protein CAP-23/NAP-22 to calmodulin does not induce the globular structure observed for the calmodulin-nonmyristylated peptide complex. Protein Sci 9, 1905-1913.

XXII. 22. Hodge, J. J., Mullasseril, P., and Griffith, L. C., 2006. Activity-dependent gating of CaMKII autonomous activity by Drosophila CASK. Neuron 51, 327-337.

XXIII. 23. Hollmann, M., and Heinemann, S., 1994. Cloned glutamate receptors. Annu Rev Neurosci 17, 31-108.

XXIV. 24. Huang, Y. Y., Li, X. C., and Kandel, E. R., 1994. cAMP contributes to mossy fiber LTP by initiating both a covalently mediated early phase and macromolecular synthesis-dependent late phase. Cell 79, 69-79.

XXV. 25. Juarez-Munoz, Y., Rivera-Olvera, A., Ramos-Languren, L. E., and Escobar, M. L., 2017. CaMKII requirement for the persistence of in vivo hippocampal mossy fiber synaptic plasticity and structural reorganization. Neurobiol Learn Mem 139, 56-62.

XXVI. 26. Kanaseki, T., Ikeuchi, Y., Sugiura, H., and Yamauchi, T., 1991. Structural features of Ca2+/calmodulin-dependent protein kinase II revealed by electron microscopy. J Cell Biol 115, 1049-1060.

XXVII. 27. Kandel, E. R., 2001. The molecular biology of memory storage: a dialog between genes and synapses. Biosci Rep 21, 565-611.

XXVIII. 28. Kitamura, Y., Miyazaki, A., Yamanaka, Y., and Nomura, Y., 1993. Stimulatory effects of protein kinase C and calmodulin kinase II on N-methyl-D-aspartate receptor/channels in the postsynaptic density of rat brain. J Neurochem 61, 100-109.

XXIX. 29. Kolaj, M., Cerne, R., Cheng, G., Brickey, D. A., and Randic, M., 1994. Alpha subunit of calcium/calmodulin-dependent protein kinase enhances excitatory amino acid and synaptic responses of rat spinal dorsal horn neurons. J Neurophysiol 72, 2525-2531.

XXX. 30. Kolodziej, S. J., Hudmon, A., Waxham, M. N., and Stoops, J. K., 2000. Three-dimensional reconstructions of calcium/calmodulin-dependent (CaM) kinase IIalpha and truncated CaM kinase IIalpha reveal a unique organization for its structural core and functional domains. J Biol Chem 275, 14354-14359.

XXXI. 31. Lai, Y., Nairn, A. C., and Greengard, P., 1986. Autophosphorylation reversibly regulates the Ca2+/calmodulin-dependence of Ca2+/calmodulin-dependent protein kinase II. Proc Natl Acad Sci U S A 83, 4253-4257.

XXXII. 32. Lisman, J., 2003. Long-term potentiation: outstanding questions and attempted synthesis. Philos Trans R Soc Lond B Biol Sci 358, 829-842.

XXXIII. 33. Lisman, J., Schulman, H., and Cline, H., 2002. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 3, 175-190.

XXXIV. 34. Lledo, P. M., Hjelmstad, G. O., Mukherji, S., Soderling, T. R., Malenka, R. C., and Nicoll, R. A., 1995. Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proc Natl Acad Sci U S A 92, 11175-11179.

XXXV. 35. Lou, L. L., and Schulman, H., 1989. Distinct autophosphorylation sites sequentially produce autonomy and inhibition of the multifunctional Ca2+/calmodulin-dependent protein kinase. J Neurosci 9, 2020-2032.

XXXVI. 36. Luk, C. C., Naruo, H., Prince, D., Hassan, A., Doran, S. A., Goldberg, J. I., and Syed, N. I., 2011. A novel form of presynaptic CaMKII-dependent short-term potentiation between Lymnaea neurons. Eur J Neurosci 34, 569-577.

XXXVII. 37. Luthi, A., Wikstrom, M. A., Palmer, M. J., Matthews, P., Benke, T. A., Isaac, J. T., and Collingridge, G. L., 2004. Bi-directional modulation of AMPA receptor unitary conductance by synaptic activity. BMC Neurosci 5, 44.

XXXVIII. 38. Malenka, R. C., and Bear, M. F., 2004. LTP and LTD: an embarrassment of riches. Neuron 44, 5-21.

XXXIX. 39. Malenka, R. C., Kauer, J. A., Perkel, D. J., Mauk, M. D., Kelly, P. T., Nicoll, R. A., and Waxham, M. N., 1989. An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature 340, 554-557.

XL. 40. Malenka, R. C., and Nicoll, R. A., 1999. Long-term potentiation--a decade of progress? Science 285, 1870-1874.

XLI. 41. Manabe, T., Renner, P., and Nicoll, R. A., 1992. Postsynaptic contribution to long-term potentiation revealed by the analysis of miniature synaptic currents. Nature 355, 50-55.

XLII. 42. Mayans, O., van der Ven, P. F., Wilm, M., Mues, A., Young, P., Furst, D. O., Wilmanns, M., and Gautel, M., 1998. Structural basis for activation of the titin kinase domain during myofibrillogenesis. Nature 395, 863-869.

XLIII. 43. Mayford, M., Wang, J., Kandel, E. R., and O'Dell, T. J., 1995. CaMKII regulates the frequency-response function of hippocampal synapses for the production of both LTD and LTP. Cell 81, 891-904.

XLIV. 44. Meyer, T., Hanson, P. I., Stryer, L., and Schulman, H., 1992. Calmodulin trapping by calcium-calmodulin-dependent protein kinase. Science 256, 1199-1202.

XLV. 45. Miller, S. G., and Kennedy, M. B., 1985. Distinct forebrain and cerebellar isozymes of type II Ca2+/calmodulin-dependent protein kinase associate differently with the postsynaptic density fraction. J Biol Chem 260, 9039-9046.

XLVI. 46. Miyamoto, E., 2006. Molecular mechanism of neuronal plasticity: induction and maintenance of long-term potentiation in the hippocampus. J Pharmacol Sci 100, 433-442.

XLVII. 47. Mulkey, R. M., Herron, C. E., and Malenka, R. C., 1993. An essential role for protein phosphatases in hippocampal long-term depression. Science 261, 1051-1055.

XLVIII. 48. Myers, J. B., Zaegel, V., Coultrap, S. J., Miller, A. P., Bayer, K. U., and Reichow, S. L., 2017. The CaMKII holoenzyme structure in activation-competent conformations. Nat Commun 8, 15742.

XLIX. 49. Naoki, H., Sakumura, Y., and Ishii, S., 2005. Local signaling with molecular diffusion as a decoder of Ca2+ signals in synaptic plasticity. Mol Syst Biol 1, 2005 0027.

L. 50. Nelson, A. B., Gittis, A. H., and du Lac, S., 2005. Decreases in CaMKII activity trigger persistent potentiation of intrinsic excitability in spontaneously firing vestibular nucleus neurons. Neuron 46, 623-631.

LI. 51. Nicoll, R. A., and Malenka, R. C., 1999. Expression mechanisms underlying NMDA receptor-dependent long-term potentiation. Ann N Y Acad Sci 868, 515-525.

LII. 52. Parsley, S. L., Pilgram, S. M., Soto, F., Giese, K. P., and Edwards, F. A., 2007. Enriching the environment of {alpha}CaMKIIT286A mutant mice reveals that LTD occurs in memory processing but must be subsequently reversed by LTP. Learn Mem.

LIII. 53. Rich, R. C., and Schulman, H., 1998. Substrate-directed function of calmodulin in autophosphorylation of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 273, 28424-28429.

LIV. 54. Rubenstein, J. L., Greengard, P., and Czernik, A. J., 1993. Calcium-dependent serine phosphorylation of synaptophysin. Synapse 13, 161-172.

LV. 55. Sahyoun, N., LeVine, H., 3rd, Burgess, S. K., Blanchard, S., Chang, K. J., and Cuatrecasas, P., 1985. Early postnatal development of calmodulin-dependent protein kinase II in rat brain. Biochem Biophys Res Commun 132, 878-884.

LVI. 56. Sakagami, H., and Kondo, H., 1993. Differential expression of mRNAs encoding gamma and delta subunits of Ca2+/calmodulin-dependent protein kinase type II (CaM kinase II) in the mature and postnatally developing rat brain. Brain Res Mol Brain Res 20, 51-63.

LVII. 57. Schulman, H., 1993. The multifunctional Ca2+/calmodulin-dependent protein kinases. Curr Opin Cell Biol 5, 247-253.

LVIII. 58. Schworer, C. M., Colbran, R. J., Keefer, J. R., and Soderling, T. R., 1988. Ca2+/calmodulin-dependent protein kinase II. Identification of a regulatory autophosphorylation site adjacent to the inhibitory and calmodulin-binding domains. J Biol Chem 263, 13486-13489.

LIX. 59. Silva, A. J., Wang, Y., Paylor, R., Wehner, J. M., Stevens, C. F., and Tonegawa, S., 1992. Alpha calcium/calmodulin kinase II mutant mice: deficient long-term potentiation and impaired spatial learning. Cold Spring Harb Symp Quant Biol 57, 527-539.

LX. 60. Stevens, C. F., and Wang, Y., 1994. Changes in reliability of synaptic function as a mechanism for plasticity. Nature 371, 704-707.

LXI. 61. Sudhof, T. C., and Jahn, R., 1991. Proteins of synaptic vesicles involved in exocytosis and membrane recycling. Neuron 6, 665-677.

LXII. 62. Tobimatsu, T., and Fujisawa, H., 1989. Tissue-specific expression of four types of rat calmodulin-dependent protein kinase II mRNAs. J Biol Chem 264, 17907-17912.

LXIII. 63. Wang, X. Q., Deriy, L. V., Foss, S., Huang, P., Lamb, F. S., Kaetzel, M. A., Bindokas, V., Marks, J. D., and Nelson, D. J., 2006. CLC-3 channels modulate excitatory synaptic transmission in hippocampal neurons. Neuron 52, 321-333.

LXIV. 64. Wirkner, K., Gunther, A., Weber, M., Guzman, S. J., Krause, T., Fuchs, J., Koles, L., Norenberg, W., and Illes, P., 2006. Modulation of NMDA Receptor Current in Layer V Pyramidal Neurons of the Rat Prefrontal Cortex by P2Y Receptor Activation. Cereb Cortex.

LXV. 65. Wu, J., Rowan, M. J., and Anwyl, R., 2006. Long-term potentiation is mediated by multiple kinase cascades involving CaMKII or either PKA or p42/44 MAPK in the adult rat dentate gyrus in vitro. J Neurophysiol 95, 3519-3527.

LXVI. 66. Xia, Z., and Storm, D. R., 2005. The role of calmodulin as a signal integrator for synaptic plasticity. Nat Rev Neurosci 6, 267-276.

LXVII. 67. Yakel, J. L., Vissavajjhala, P., Derkach, V. A., Brickey, D. A., and Soderling, T. R., 1995. Identification of a Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in non-N-methyl-D-aspartate glutamate receptors. Proc Natl Acad Sci U S A 92, 1376-1380.

LXVIII. 68. Yang, E., and Schulman, H., 1999. Structural examination of autoregulation of multifunctional calcium/calmodulin-dependent protein kinase II. J Biol Chem 274, 26199-26208.

LXIX. 69. Zucker, R. S., and Regehr, W. G., 2002. Short-term synaptic plasticity. Annu Rev Physiol 64, 355-405.

Additional Files

Published

15-07-2017

How to Cite

Atiq Hassan, M. V. Raghavendra Rao, Yogesh Acharya, Sateesh Arja, & Reshma Fateh. (2017). CALCIUM CALMODULIN-DEPENDENT PROTEIN KINASE II (CAMKII) VERSATILE PLAYER FOR SYNAPTIC PLASTICITY. International Education and Research Journal (IERJ), 3(7). Retrieved from https://ierj.in/journal/index.php/ierj/article/view/1261