NEW ERA OF PACEMAKER IMPLANTATION, LARGE TO SMALL SIZE AND PACING LEADS TO LEADLESS PACEMAKER
Abstract
With advances in technology, size was reduced significantly to allow the first implantable pacemaker; however, it is now more than 50 years since transvenous leads were developed and first used with implantable devices . These early pacemakers had very limited functionality and only performed asynchronous pacing. Rapid advances have been made over the past five decades, including dual-chamber pacing, rate response algorithms, remote control devices, improved battery technology and cardiac resynchronisation therapy. Pacemaker leads, which connect the chest wall of a pacemaker to the pacing electrode in the heart, are the weakest part of pacing systems, often necessitating their risky removal and replacement. In addition, transvenous leads provide a portal into the vascular space, which increases the risk of infection. Patients with traditional pacemakers are also susceptible to haematomas and pocket infections in the chest wall where the generators lie. Thus, a self-contained leadless pacemaker which can be placed directly into the heart is an appealing prospect. All of these possibilities point towards a bright future for leadless pacing with the likely possibility that the devices of the future will be largely devoid of intravascular leads.
References
I. Parsonnet V, Zucker IR, Asa MM. Preliminary investigation of the development of a permanent implantable pacemaker using an intracardiac dipole electrode. Clin Res. 1962;10:391.
II. Aquilina O. A brief history of cardiac pacing. Images Paediatr Cardiol. 2006 Apr;8(2):17-81.
III. Reynolds D, Duray GZ, Omar R, Soejima K, Neuzil P, Zhang S, Narasimhan C, Steinwender C, Brugada J, Lloyd M, Roberts PR, Sagi V, Hummel J, Bongiorni MG, Knops RE, Ellis CR, Gornick CC, Bernabei MA, Laager V, Stromberg K, Williams ER, Hudnall JH, Ritter P; Micra Transcatheter Pacing Study Group. A leadless intracardiac transcatheter pacing system. N Engl J Med. 2016 Feb 11;374(6):533-41.
IV. Reddy VY. Chronic performance of leadless cardiac pacing: one year follow-up to the LEADLESS trial [webcast]. In: Heart Rhythm 2014: expedited sessions. 2015 [cited 2015 Feb 4]. (Session # LB02-01).
V. Bongiorni MG, Segreti L, Di Cori A, Bonner M, Eggen M, Omdahl P. Retrieval of a transcatheter pacemaker in sheep after a mid-term implantation time. Heart Rhythm Case Report. 2016;2:43-46.
VI. van Deursen C, van Geldorp IE, Rademakers LM, van Hunnik A, Kuiper M, Klersy C, Auricchio A, Prinzen FW. Left ventricular endocardial pacing improves resynchronization therapy in canine left bundle-branch hearts. Circ Arrhythm Electrophysiol. 2009 Oct;2(5):580-7.
VII. Leclercq F, Hager FX, Macia JC, Mariottini CJ, Pasquié JL, Grolleau R. Left ventricular lead insertion using a modified transseptal catheterization technique: a totally endocardial approach for permanent biventricular pacing in end-stage heart failure. Pacing Clin Electrophysiol. 1999 Nov;22(11):1570-5.
VIII. Jaïs P, Takahashi A, Garrigue S, Yamane T, Hocini M, Shah DC, Barold SS, Deisenhofer I, Haïssaguerre M, Clémenty J. Mid-term follow-up of endocardial biventricular pacing. Pacing Clin Electrophysiol. 2000 Nov;23(11 Pt 2):1744-7.
IX. Auricchio A, Delnoy PP, Regoli F, Seifert M, Markou T, Butter C; collaborative study group. First-in-man implantation of leadless ultrasound-based cardiac stimulation pacing system: novel endocardial left ventricular resynchronization therapy in heart failure patients. Europace. 2013 Aug;15(8):1191-7.
X. Khan FZ, Virdee MS, Palmer CR, Pugh PJ, O'Halloran D, Elsik M, Read PA, Begley D, Fynn SP, Dutka DP. Targeted left ventricular lead placement to guide cardiac resynchronization therapy: the TARGET study: a randomized, controlled trial. J Am Coll Cardiol. 2012 Apr 24;59(17):1509-18.
XI. Saba S, Marek J, Schwartzman D, Jain S, Adelstein E, White P, Oyenuga OA, Onishi T, Soman P, Gorcsan J 3rd. Echocardiography-guided left ventricular lead placement for cardiac resynchronization therapy: results of the Speckle Tracking Assisted Resynchronization Therapy for Electrode Region trial. Circ Heart Fail. 2013 May;6(3):427-34.
XII. Auricchio A, Delnoy PP, Butter C, Brachmann J, Van Erven L, Spitzer S, Moccetti T, Seifert M, Markou T, Laszo K, Regoli F. Feasibility, safety, and short-term outcome of leadless ultrasound-based endocardial left ventricular resynchronization in heart failure patients: results of the wireless stimulation endocardially for CRT (WiSE-CRT) study. Europace. 2014 May;16(5):681-8.
XIII. Bardy GH, Smith WM, Hood MA, Crozier IG, Melton IC, Jordaens L, Theuns D, Park RE, Wright DJ, Connelly DT, Fynn SP, Murgatroyd FD, Sperzel J, Neuzner J, Spitzer SG, Ardashev AV, Oduro A, Boersma L, Maass AH, Van Gelder IC, Wilde AA, van Dessel PF, Knops RE, Barr CS, Lupo P, Cappato R, Grace AA. An entirely subcutaneous implantable cardioverter-defibrillator. N Engl J Med. 2010 Jul 1;363(1):36-44.
XIV. Mondésert B, Dubuc M, Khairy P, G, Guerra PG, Gosselin G, Thibault B. Combination of a leadless pacemaker and subcutaneous defibrillator: First in-human report. Heart Rhythm Case Reports. November 2015 Volume 1, Issue 6, Pages 469–471.
XV. Paone S, Trimaglio F, Migliore A, Maltoni S, Vignatielli L. Transcatheter implantable miniaturised leadless pacemakers [Internet]. Rome: Agenas, Agnezia nazionale per i servizi sanitari regionali; 2014 Dec. [cited 2015 Feb 2]. (Horizon Scanning report No. 17).
XVI. Miller MA, Neuzil P, Dukkipati SR, Reddy VY. Leadless Cardiac Pacemakers: Back to the Future. J Am Coll Cardiol. 2015 Sep 8;66(10):1179-89.
XVII. Mond HG, Proclemer A. The 11th world survey of cardiac pacing and implantable cardioverter-defibrillators: calendar year 2009--a World Society of Arrhythmias’ project. Pacing Clin Electrophysiol. 2011 Aug;34(8):1013-27.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 International Education and Research Journal (IERJ)

This work is licensed under a Creative Commons Attribution 4.0 International License.