Raghavendra Rao M.V, Mohammed Khaleel, Manik Dass S, Khizer Hussain Junaidy, Amreen -, Mahendra Kumar Verma, Dilip Mathai


Microorganism evolved with syntrophic consortium called as bio film which provides an beneficial environment for their growth.The biofilm formation is often considered as an adaptation of large number of microbes against unfavourable environmental conditions. However, there is prevailing scientific evidence suggesting role of biofilm in offering  transport of essential molecules including nutrients.. Research findings have demonstrated that microbial cells are capable of producing variety of substances which serve as building blocks, for biofilm synthesis and cells get embedded into the matrix of extracellular polymeric substances (EPS) (1,2). These multicellular microbial arrangements allow microbes to communicate within the local environment  as well as the external environment. 

Certainly a  biofilm promotes better growth and development of microbes. Also such arrangement provides microbes  a protection against antibiotics and other antimicrobial agents.(3) Microbes are capable to adhere with all microbial adherence to biotic material) a crucial step in microbial colonization is improved with biofilms, subsequently improving their growth.(4). The research findings have demonstrated that  microbes capable of Biofilm formation attach to various living tissues including external and visceral. The adherence allows host microbes interaction and pathogenecity as well. The capacity of microbial pathogenicity is function of expression of virulence factors and these virulence factors are directly linked with quorum sensing and biofilm formation (5). 


Planktonic, Cystic fibrosis (CF) Pseudomonas aeruginosa, Helicobacter pylori , Quorum-sensing systems , c-di-GMP , “Antimicrobial agent”

Full Text:



D. Mack, P. Becker, I. Chatterjee et al., “Mechanisms of biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus: functional molecules, regulatory circuits, and adaptive responses,” International Journal of Medical Microbiology, vol. 294, no. 2-3, pp. 203–212, 2004

K. Lewis, “Persister cells and the riddle of biofilm survival,” Biochemistry, vol. 70, no. 2, pp. 267–274, 2005

J. W. Costerton, L. Montanaro, and C. R. Arciola, “Bacterial communications in implant infections: a target for an intelligence war,” The International Journal of Artificial Organs, vol. 30, no. 9, pp. 757–763, 2007

K. Lewis, “Multidrug tolerance of biofilms and persister cells,” Current Topics in Microbiology and Immunology, vol. 322, pp. 107–131, 2008

K. Lewis, “Persister cells,” Annual Review of Microbiology, vol. 64, pp. 357–372, 2010

Davey, M. E., and G. A. O'Toole. 2000. Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 64:847-867.

Steinberg N,Kolodkin-Gal1 ,2015.The matrix be loaded.How sensing the extra cellular matrix synchronizes bacterial communities.J.Bacteriol,197:2092-2103

Kalia VC,2013.Quorium sensing inhibitors.An over view.Biotechnol.Adv 31;224-245

Vipin Chandra Kalia,Jyostsana Prasad,Shikha Koul,Subrasree Ray,Simple and Rapid method for detecting Biofilm forming Bacteria,Indian J.Microbiol,2017 57(1);109-111

Koul S Kumar,P.Kalia VC,2015.A unique genome wide approach to search novel markers for rapid identification of bacterial pathogens.J.Mol.Genet.Med 9:194

Koul S,Prakash J,Misra A,Kalia VC, ,2015 potential emergency of multi-quorum sensing inhibitor resistance (MQSIR) bacteria (Indian J.Microbiol 56:1-18

Wang H,Dong Y,Wang G,Xu X,Zhou G,2016.Effect of growth media on gene expression levels in Salmonella typhinurium biofilm formed on stainless steel surface.Food control 59:546-552

Moskowitz SM1, Foster JM, Emerson J, Burns JL. Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis.J Clin Microbiol. 2004 May;42(5):1915-22.

Ito T et al.; Isolation, characterization, and in situ detection of a novel chemolithoautotrophic sulfur-oxidizing bacterium in wastewater biofilms growing under microaerophilic conditions;Appl Environ Microbiol, 2004 May, 70(5), 3122 - 9

Jeremy S. Webb, Lyndal S. Thompson, Sally James, Tim Charlton, Tim Tolker-Nielsen, Birgit Koch, Michael Givskov, Staffan Kjelleberg,,DOI: 10.1128/JB.185.15.4585-4592 ,2003.Cell Death in Pseudomonas aeruginosa Biofilm Development, Microbial communities and interactions

Stanley NR et al.; Environmental signals and regulatory pathways that influence biofilm formation; Mol Microbiol, 2004 May, 52(4), 917 - 24

Hideo Yonezawa, Takako Osaki, and Shigeru Kamiya ,Biofilm Formation by Helicobacter pylori and Its Involvement for Antibiotic Resistance,BioMed Research International Volume 2015, Article ID 914791, 9 pages

A. García, M. J. Salas-Jara, C. Herrera, and C. González, “Biofilm and Helicobacter pylori: from environment to human host,” World Journal of Gastroenterology, vol. 20, no. 19, pp. 5632–5638, 2014

Y. Tashiro, H. Uchiyama, and N. Nomura, “Multifunctional membrane vesicles in Pseudomonas aeruginosa,” Environmental Microbiology, vol. 14, no. 6, pp. 1349–1362, 2012.

Pseudomonas aeruginosa Cystic Fibrosis isolates of similar RAPD genotype exhibit diversity in biofilm forming ability in vitro BMC Microbiology volume 10, Article number: 38 (2010)

Victoria A. Marko,Sara L. N. Kilmury,Lesley T. MacNeil,Lori L. Burrows ,Pseudomonas aeruginosa type IV minor pilins and PilY1 regulate virulence by modulating FimS-AlgR activity,PLOS pathogens,Published: May 18, 2018.

Rita Chandki, Priyank Banthia, and Ruchi Banthia, Biofilms: A microbial home,Chandki R, Banthia P, Banthia R. Biofilms: A microbial home. J Indian Soc Periodontol. 2011;15(2):111–114. doi:10.4103/0972-124X.84377

Alburi A,Comito N,Kashtanov D,Dicks LM,chikindas ML,,2016.Control of biofilm formation:antibiotics and beyond.Appl.Environ.Microbiol

Jamal M,Ahmad W,andleeb S,Jalil F,Imran M, Nawaz MA, Hussain T,Ali M,Kamil MA, 2018.Bacterial Biofilm and associated infections.J.Clin.Med.assoc 81:7-11

Nicolas Barraud Michael V. Storey Zoe P. Moore ,Jeremy S. Webb Scott A. Rice ,Staffan Kjelleberg,

Nitric oxide‐mediated dispersal in single‐ and multi‐species biofilms of clinically and industrially relevant microorganisms,Microbial Biotechnology,2009,SFAM,Society for applied microbiology

Melvin A. Shiffman,Biofilm: History, Cause, and Treatment,October 2017,Biofilm, Pilonidal Cysts and Sinuses pp 3-5

Høiby N,A short history of microbial biofilms and biofilm infections.,APMIS. 275. US National Library of Medicine,National institutute of health 2017 Apr;125(4):272-

S. M. Soto, “Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm,” Virulence, vol. 4, no. 3, pp. 223–229, 2013.

H. Van Acker, P. Van Dijck, and T. Coenye, “Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms,” Trends in Microbiology, vol. 22, no. 6, pp. 326–333, 2014.

K. Lewis, “Riddle of biofilm resistance,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 4, pp. 999–1007, 2001.

I. Keren, D. Shah, A. Spoering, N. Kaldalu, and K. Lewis, “Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli,” Journal of Bacteriology, vol. 186, no. 24, pp. 8172–8180, 2004.

I. Keren, D. Shah, A. Spoering, N. Kaldalu, and K. Lewis, “Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli,” Journal of Bacteriology, vol. 186, no. 24, pp. 8172–8180, 2004.

I. Keren, N. Kaldalu, A. Spoering, Y. Wang, and K. Lewis, “Persister cells and tolerance to antimicrobials,” FEMS Microbiology Letters, vol. 230, no. 1, pp. 13–18, 2004.

M. D. LaFleur, Q. Qi, and K. Lewis, “Patients with long-term oral carriage harbor high-persister mutants of Candida albicans,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 1, pp. 39–44, 2010.

K. Sauer, A. K. Camper, G. D. Ehrlich, J. W. Costerton, and D. G. Davies, “Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm,” Journal of Bacteriology, vol. 184, no. 4, pp. 1140–1154, 2002.

N. Cerca, K. K. Jefferson, R. Oliveira, G. B. Pier, and J. Azeredo, “Comparative antibody-mediated phagocytosis of Staphylococcus epidermidis cells grown in a biofilm or in the planktonic state,” Infection and Immunity, vol. 74, pp. 4849–4855, 2006.

N. Cerca, R. Oliveira, and J. Azeredo, “Susceptibility of Staphylococcus epidermidis planktonic cells and biofilms to the lytic action of staphylococcus bacteriophage K,” Letters in Applied Microbiology, vol. 45, no. 3, pp. 313–317, 2007.

P. Stoodley, D. Debeer, and Z. Lewandowski, “Liquid flow in biofilm systems,” Applied and Environmental Microbiology, vol. 60, no. 8, pp. 2711–2716, 1994.

R. M. Donlan, “Biofilms: microbial life on surfaces,” Emerging Infectious Diseases, vol. 8, no. 9, pp. 881–890, 2002

K. P. Lemon, D. E. Higgins, and R. Kolter, “Flagellar motility is critical for Listeria monocytogenes biofilm formation,” Journal of Bacteriology, vol. 189, no. 12, pp. 4418–4424, 2007.

C. M. Toutain, N. C. Caizza, M. E. Zegans, and G. A. O'Toole, “Roles for flagellar stators in biofilm formation by Pseudomonas aeruginosa,” Research in Microbiology, vol. 158, no. 5, pp. 471–477, 2007.

T. Schmidt and A. Kirschning, “Total synthesis of carolacton, a highly potent biofilm inhibitor,” Angewandte Chemie, vol. 51, no. 4, pp. 1063–1066, 2012.

P. N. Danese, L. A. Pratt, and R. Kolter, “Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture,” Journal of Bacteriology, vol. 182, no. 12, pp. 3593–3596, 2000.

G. G. Anderson, J. J. Palermo, J. D. Schilling, R. Roth, J. Heuser, and S. J. Hultgren, “Intracellular bacterial biofilm-like pods in urinary tract infections,” Science, vol. 301, no. 5629, pp. 105–107, 2003.

C. Beloin, A. Roux, and J. M. Ghigo, “Escherichia coli biofilms,” Current Topics in Microbiology and Immunology, vol. 322, pp. 249–289, 2008.

L. Cegelski, J. S. Pinkner, N. D. Hammer et al., “Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation,” Nature Chemical Biology, vol. 5, no. 12, pp. 913–919, 2009.

S. M. Hinsa, M. Espinosa-Urgel, J. L. Ramos, and G. A. O'Toole, “Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein,” Molecular Microbiology, vol. 49, no. 4, pp. 905–918, 2003.

N. C. Caiazza and G. A. O'Toole, “SadB is required for the transition from reversible to irreversible attachment during biofilm formation by Pseudomonas aeruginosa PA14,” Journal of Bacteriology, vol. 186, no. 14, pp. 4476–4485, 2004.

O. E. Petrova and K. Sauer, “The novel two-component regulatory system BfiSR regulates biofilm development by controlling the small RNA rsmZ through CafA,” Journal of Bacteriology, vol. 192, no. 20, pp. 5275–5288, 2010.

H. M. Lappin-Scott and C. Bass, “Biofilm formation: attachment, growth, and detachment of microbes from surfaces,” American Journal of Infection Control, vol. 29, no. 4, pp. 250–251, 2001.

Nira Rabin,Yue Zheng,Clement Opoku-Temeng,Yixuan Du,Eric Bonsu,Herman O Sintim,29 Apr 2015.Agents that inhibit bacterial biofilm formationUTURE MEDICINAL CHEMISTRYVOL. 7, NO. 5

Ammar Algburi, Nicole Comito, Dimitri Kashtanov, Leon M. T. Dicks, Michael L. Chikindas,2017,Control of Biofilm Formation: Antibiotics and Beyond,Applied environmental biology,American Society for biology

Tan BK, Vanitha J. Immunomodulatory and antimicrobial effects of some traditional chinese medicinal herbs: a review. Curr Med Chem. 2004;11:1423–30

Lau D, Plotkin BJ. Antimicrobial and biofilm effects of herbs used in traditional Chinese medicine. Nat Prod Commun. 2013;8:1617–20

Karbasizade V, Dehghan P, Sichani MM, Shahanipoor K, Jafari R, Yousefian R. Evaluation of three plant extracts against biofilm formation and expression of quorum sensing regulated virulence factors in Pseudomonas aeruginosa. Pak J Pharm Sci. 2017;30:585–9.

Vijai Gupta,2016,Microbial Cellulase System Properties and Applications.New and Future Developments in Microbial Biotechnology and Bioengineering

Vijai G. Gupta (Editor), Anita Pandey ,2019.New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Secondary Metabolites Biochemistry and Applications

Mohankandhasamy Ramasamy and Jintae Lee,2016.Recent Nanotechnology Approaches for Prevention and Treatment of Biofilm-Associated Infections on Medical Devices.BioMed Research International

Volume 2016,

Rama Swamy M,Lee J,2016.Recent nanotechnology approches for prevention and treatment of Biofilm associated infections on medical devices.Bio-Med Res.Int.2016:18 512-242

Rodrigues L1, Banat IM, Teixeira J, Oliveira R.Strategies for the prevention of microbial biofilm formation on silicone rubber voice prostheses.J Biomed Mater Res B Appl Biomater. 2007 May;81(2):358-70.

Scott A. Rice, Stefan Wuertz, and Staffan Kjelleberg,Next‐generation studies of microbial biofilm communities. Rice SA, Wuertz S, Kjelleberg S. Next-generation studies of microbial biofilm communities. Microb Biotechnol. 2016;9(5):677–680. doi:10.1111/1751-7915.12390

Priti Saxena,Yogesh jyoshi,Kartik Rawat,Renu Biofilms,Architecture resistance quorum sensing and control mechanisms.Indian J.of microbiol.2019,59 (1):3-12


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.