Deposition of amyloid fibrils derived from circulating acute-phase reactant serum amyloid A protein causes systemic amyloidosis, a serious inflammatory disorder. Amyloidosis may manifest as periodontal destruction that leads to severe chronic periodontitis. Proper periodontal treatment may alleviate systemic inflammatory mediators caused by the amyloidosis.

Introduction

 Reactive systemic AA amyloidosis, with a sustained acute phase response (APR), can complicate chronic inflammatory disorders. AA amyloid fibrils are derived from the acute-phase reactant serum amyloid A protein (SAA) through a process of cleavage, misholding, and aggregation [1]. Renal disease is a frequent manifestation of the systemic amyloidosis and a major cause of morbidity [1].

SAA is an apolipoprotein constituent of high-density lipoprotein that is synthesized by hepatocytes under the transcriptional regulation of pro-inflammatory cytokins [2]. Sustained overproduction of SAA is a prerequisite for the development of AA amyloidosis. Amyloidosis affects a small proportion of patients that present with chronic inflammatory disorders [3,4]. The etiologies for this disease remain unknown. The activation pattern of SAA protein in the presence of inflammation is similar to that of C-reactive protein (CRP) [5]. The level of SAA increases during acute and chronic infections [6,7]. It has been shown that patients with chronic periodontitis display signs of a sub-clinical systemic inflammatory condition [6]. Furthermore, treatment of advanced periodontitis by full-mouth tooth extraction reduced systemic levels of cardiovascular risk and inflammatory reaction [9].

Cross-sectional studies have demonstrated that plasma levels of inflammatory markers such as CRP, fibration-pI1.6 and leukocyte counts increase in periodontitis patients when compared to periodically healthy patients [9,10]. Some studies have shown that effective periodontal therapy reduced levels of CRP [11]. This implies that inflammatory reaction triggered by periodontitis contributes to the whole-body inflammatory burden.

Secondary amyloidosis, representing approximately 45% of all cases of systemic amyloidosis, has been associated with various chronic inflammatory conditions such as rheumatoid arthritis, sarcoidosis, Crohn's disease, ulcerative colitis and tuberculosis [12]. Secondary amyloidosis has also been linked to malignant diseases such as Hodgkin's disease and mesothelioma [12]. In addition, familial Mediterranean fever (FMF), an autosomal recessive disease, primarily affects the population in the Mediterranean basin [13]. FMF is characterized by recurrent episodes of fever and serosal inflammation along with a very intense APR. The most important complication of FMF is secondary amyloidosis [13]. Mutation analysis of Mediterranean fever gene (MEFV) can be helpful in confirming the diagnosis for patients with an atypical presentation. Infection or inflammation may cause AA amyloidosis even without obvious infection or inflammation [14,15]. The progression of secondary amyloidosis depends on the nature and status of the underlying chronic inflammatory disease. For example, secondary amyloidosis-associated tuberculosis has been shown to undergo remission when the chronic infection has been eliminated [16].

Histopathologic examination of amyloid is essential for the diagnosis and classification of amyloidosis [17,18]. The sensitivity and specificity of the histopathologic diagnosis depend on the biopsy site and the adequacy of the tissue sample [19,20].

Discussion

It has been shown that chronic infection or inflammatory diseases may cause secondary amyloidosis even without obvious infection or inflammation [14,15]. Patients with chronic periodontal diseases had higher levels of SAA, the precursor protein of amyloid fibril in secondary amyloidosis, than patients without periodontal disease [22]. To date, only a few reports address the interaction between periodontal disease and secondary amyloidosis [20,23]. One study showed the prevalence of moderate to severe periodontitis was greater in FMF patients with amyloidosis than without amyloidosis [20].

The other study was a case report that illustrated an interaction between systemic amyloidosis and severe periodontitis in a patient with rheumatoid arthritis [23]. The definitive method of diagnosing amyloidosis is tissue biopsy. Although biopsies can be obtained from compromised organs, blood vessel fragility associated with amyloid deposition carries a risk of bleeding. Biopsy of oral tissues has been advocated as an adjunctive or alternate method of detecting amyloid deposition. Gingival, tongue, bucal mucosa and minor salivary gland tissue have all been recommended potential sites for biopsies, however, how sensitive are these with regard to the sensitivity of amyloid detection in each of these tissues [24]. As a result, it has been reported that the anatomical location of the amyloid deposition within the tissue was consistent regardless of the location of the biopsy. This may have important implications for the biopsy technique used for the detection of amyloid [24]. If intra-oral biopsies are used more commonly for patients with chronic periodontal disease, amyloid may be found more frequently than expected.

Secondary amyloidosis is also associated with malignant diseases such as Hodgkin's disease and mesothelioma. Clinical examination, abdominal and chest computed tomography were negative for any malignant disorders or airflow obstruction. With the decline of tuberculosis in the developed countries, rheumatoid arthritis and inflammatory bowel disease remain the leading cause of secondary amyloidosis [12]. However, in the developing countries, chronic infectious diseases such as tuberculosis and leprosy are major causes [12].

Indeed, patients with chronic periodontal diseases have higher levels of SAA protein in secondary amyloidosis than patients without periodontal disease [22]. Chronic periodontal disease could exaggerate secondary amyloidosis via increased levels of systemic inflammatory mediators. In addition, our report highlights the possibility that amyloid deposition in patients with systemic amyloidosis causes accelerated periodontal destruction and bone loss of affected teeth. Amyloid deposition within the periodontium elicited an inflammatory reaction similar to that of foreign body material. Accelerated destruction of periodontium and associated supporting bone apparently is caused by this foreign-body-type giant cell reaction. Therefore, elimination of local infection associated with periodontal diseases will aid in the reduction of levels of systemic inflammatory mediators, which may slow the progression of secondary amyloidosis.

Sustained overproduction of SAA is a prerequisite for the development of AA amyloidosis, although the reasons for these remain unknown. Robbins [27] proposed two possible explanations for this. First, SAA-protein is normally degraded to soluble end products via monocytederived enzymes. Conceivably, individuals who develop amyloid have an enzyme defect that cannot breakdown SAA-protein completely hence insoluble AA molecules were produced. Second, a genetically determined structural abnormality in the SAA-protein molecule itself renders it resistant to degradation by monocytes. Evidence has suggested that individual genetic susceptibility to amyloidosis may influence the host's response to infection. Nihali et al. [28] have found the link between polymorphisms of genes encoding for neutrophil receptors and pro-inflammatory cytokines and the presence of pathogenic bacteria in patients with aggressive periodontitis.

The authors then speculated that complex interactions between the microbiota and host genome may be at the basis of a patient's susceptibility to aggressive periodontitis. Currently many investigators are trying to define the genotype-phenotype correlations and risk factors for the development of secondary amyloidosis.
REFERENCES


